
–1–

MicroConverterTMTechnical Note - uC001
Using the ADuC812 I2C Interfacea

Ver 1.0 May 1999 Technical Note uC001
 www.analog.com/microconverter

INTRODUCTION
This Application Note describes the hardware and software implementation of an I2C channel using the
ADuC812 's on-chip I2C interface. The I2C channel described is a simple single master to single slave
implementation as shown in figure 1 below.

Figure 1. I2C Block Diagram

One Technology Way, P.O. Box 9106, Norwood. MA 02062-9106, U.S.A.
Tel: 617/329-4700 Fax: 617/326-8703

Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties
which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of Analog Devices.

� MicroConverter is a Trademark of Analog Devices, Inc.

® IIIII22222CCCCC is a Registered Trademark of Philips Semiconductors Inc.

ADuC812
(Master)

ADuC812
(S lave)

26

27 27

26SCLOCK

SDATA

5V

Pull-up
resistor

Pull-up
resistor

SCLOCK

SDATA

Using the ADuC812 I2C Interface

–2–Ver 1.0 May 1999 Technical Note uC001
 www.analog.com/microconverter

I2C INTERFACE OVERVIEW
The I2C (Inter Integrated Circuit) is a two-wire serial communication system developed by Philips
which allows multiple masters and multiple slaves connected via two wires (SCLOCK, SDATA).

The SCLOCK signal controls the data transfer between master and slave. The SDATA signal is used
to transmit or receive data. Both lines are bidirectional. The bit-rate is controlled by the SCLOCK line.

In an I2C interface there is at least a single master and a single slave although I2C can also support
multi-master multi-slave configurations. The master generates the clock whereas the slave is driven by
the clock. A typical data transfer sequence is shown in figure 2.

This sequence starts with a Start bit which is generated by the master. A start condition is indicated by
a HIGH to LOW transition on the SDATA line while SCLOCK is HIGH as shown in figure 3.

Figure 3. Start Condition on the I2C bus

Figure 2. Typical I2C transfer sequence

1 2 7 8 9 1 8 9
ACK ACK

SCLOCK

2-73-6

MS B LSB

DATA

Start
 bit

Stop
 bit

SDATA

R/W

MS B LS B

bit bit

Start

SDATA

SCLOCK

Using the ADuC812 I2C Interface

–3–Ver 1.0 May 1999 Technical Note uC001
 www.analog.com/microconverter

After the start condition the master sends a byte (MSB first) on the SDATA line which contains the
slave address and a R/W status bit. The first seven bits make up the slave address. The eight bit which
is the LSB (least significant bit) determines the direction of the message (see figure 4). A '0' means
that the master will write data to a selected slave. A '1' in this bit means that the master will read data
from the slave. These operations will only occur once a valid acknowledge bit has been first received
from the slave.

Figure 4. First byte after the START condition

When the master sends the address, each slave device in the system compares the first seven bits after
the start condition with its own address. If they match, the slave device considers itself addressed by the
master and replies by sending an acknowledge (see figure 5). An acknowledge is seen as a LOW level
on the SDATA line at the 9th clock period and should be generated by the slave at the end of each byte
in the transmission.

Figure 5. Acknowledge on the I2C bus

If there is no acknowledge or if the transfer is completed, the master generates a STOP condition
defined by a LOW to HIGH transition on the SDATA line while SCLOCK is HIGH (see figure 6).

Figure 6. Stop Condition on the I2C bus

MSB LSB

R/W

SLAVE ADDRESS

1 2 7 8 9

Clock pulse for acknowledge

Master Clock 3-6

MSB LSB

Start

Data output by
transm itter

Data output by
receiver

Stop

SDATA

SCLOCK

Using the ADuC812 I2C Interface

–4–Ver 1.0 May 1999 Technical Note uC001
 www.analog.com/microconverter

I2C IMPLEMENTATION ON THE ADuC812

This section describes the I2C implementation on the ADuC812 MicroConverter. The ADuC812 I2C
interface provides both hardware slave and software master operating modes. The SCLOCK and
SDATA are pins 26 and 27 respectively. On power on or reset, the I2C interface defaults to slave
operation.

Three Special Function Registers (SFRs) are used to control this interface :

I2CADD : Holds the 7-bit address of the ADuC812 device on the bus (default value = 55H).

7-bit address procedure :
If the slave holds in its I2CADD register the value 44H, the master must send the value 88H to
open communication with the slave. Because of the 7-bit address, the slave knows automatically
that the LSB (least significant bit) is the Read / Write status bit. Therfore, the slave compares
only the 7 upper bits to his own address. To make a complete word (8 bits), the slave adds
a zero for the MSB (most significant bit). The result of this completion is compared to his own
address (see figure 7 for an illustration).

Figure 7. Slave address procedure

1 0 0 0 1 0 0
0

0 1 0 0 0 1 0 0

1 0 0 0 1 0 0

Step 1 : The m aster sends the address 88H
 or 89H (depends of m ode of opera
 tion).

Step 2 : The slave takes the 7-upper bits.

1

Step 3 : The slave builds the address by adding a 0.

The MSB is added by the slave to create a 8-bit word.

RESULT : The slave receives the address 44H.

0

1

Using the ADuC812 I2C Interface

–5–Ver 1.0 May 1999 Technical Note uC001
 www.analog.com/microconverter

I2CDAT : Holds the 8 data bits to be received or to be transmitted.

I2CCON : Holds configuration/control bits for master/slave mode of operation (see figure 7).

The slave uses the three lower bits of the I2CCON register. As the slave implementation is hardware,
the slave will automatically detect a START bit, an acknowledge, an interrupt or STOP bits.

The master uses the four upper bits of the I2CCON register to control the generation of the master
signals on the SCLOCK and SDATA pins. Therefore, in a software master, the user must generate
both SCLOCK and SDATA signals in software using these bit addressable locations.
For example, the bit that controls the SCLOCK signal (pin 26) is defined as a bit addressable location
(MCO- bit address) in the I2CCON register.

An example of code used to generate a continuous HIGH-LOW-HIGH pulses on the SCLOCK pin is
shown below :

AGAIN : SETB MCO
CLR MCO
JMP AGAIN

Figure 7. I2CCON bit designations

MDO MCOMDE MDI I2CM I2CRS I2CTX I2CI

M DO Master data output

M DE Master data enable

M CO Master clock ouput

M DI Master data input

I2C I I2C interrupt bit

I2CTX d irection status

I2CRS I2C reset bit

I2CM Master m ode select

Using the ADuC812 I2C Interface

–6–Ver 1.0 May 1999 Technical Note uC001
 www.analog.com/microconverter

I2C COMMUNICATION (Master-transmitter to Slave-receiver)

In this mode, the master both transmits the slave address and on receipt of a valid acknowledge also
transmits three bytes (the transmission/reception of three bytes is used for the code examples docu-
mented in this technical only) before terminating the communication by generating a stop bit.

As you have two ADuC812s, you will need two different programs, one for the master, one for the
slave. On the next two pages, you will find the flowcharts corresponding to both master and slave
programs in a Master-transmitter Slave-receiver mode of operation.

The slave uses this sequence of operations :

-Receive address.
-Send the acknowledge.
-Receive the first data.
-Send the acknowledge.
-Receive the second data.
-Send the acknowledge.
-Receive the third data.
-Send the acknowledge.

The master uses this sequence of operations :

-Send a Start bit.
-Send the slave address.
-Wait for a valid acknowledge bit.
-Send the first data.
-Wait for a valid acknowledge bit.
-Send the second data.
-Wait for a valid acknowledge bit.
-Send the third data.
-Wait for a valid acknowledge bit
-Send a Stop bit.

ADuC812
(Master)

ADuC812
(Slave)

26

27 27

26SCLOCK

SDATA

5V

Pull-up
resistor

Pull-up
resistor

SCLOCK

SDATA

Using the ADuC812 I2C Interface

–7–Ver 1.0 May 1999 Technical Note uC001
 www.analog.com/microconverter

Master software :
The flowchart on the left side describes all the
operations that occur in this mode. The master,
which is the transmitter, transmits data to the
slave-receiver. In this mode the transfer direction
is not changed (i.e. the master transmits the
address and then follows by transmitting the
data).

1. In the software, once the I2C SFRs have been
configured, the master sends a START bit and
the slave address on the SDATA line. In this
mode the R/W status bit is reset. If the master
doesn't receive an acknowledge from the slave, it
sends a STOP bit, an error bit is set and the
transfer is finished.

2. If the slave acknowledges, the master sends
data that has been previously written in the
external data memory on the master evaluation
board. After each byte transmitted, the slave has
to acknowledge. If it acknowledges, the next data
is sent by the master. If at any moment the slave
fails to acknowledge, the master sends a STOP
bit, an error bit is set and the transfer is finished.

3. When BYTECNT is equal to '0' which means
that the last byte of the transfer has been sent
(there are 3 bytes in this example), the master
sends a STOP bit indicating that the transfer is
complete.

FLOWCHARTS

ADuC812
(Master)

ADuC812
(S lave)

26

27 27

26SCLOCK

SDATA

5V

Pull-up
resistor

Pull-up
resistor

SCLOCK

SDATA

Start

Config SP

Config I2C

Config data

Bit start

Send slave address

Config BITCNT

Send data bit

RLC

BITCNT=BITCNT-1

BITCNT
 =0?

BYTECNT=BYTECNT-1

BYTECNT
 =0?

Stop bit

End

 S lav e
acknowledge
 receiv e d
 ?

N

Y

N

Y

Y

N

N

Y

Config DPTR

 S lav e
acknowledge
 received
 ?

1.

2.

3.

Using the ADuC812 I2C Interface

–8–Ver 1.0 May 1999 Technical Note uC001
 www.analog.com/microconverter

FLOWCHARTS

Slave software :
The flowchart on the left side describes all the
operations that occured in this mode. The master,
which is the transmitter, transmits data to the
slave-receiver. In this mode the transfer direction
is not changed.

1. In software, once the I2C SFRs have been
configured, and after the START bit, which is
sent by the master, the slave waits for the first
data byte (the arrival of the data will generate an
interrupt). Once it is received, the slave compares
the data to its own address. If they match, the
slave sends an acknowledge on the SDATA line
and as the R/W status bit is set waits for the data (
the arrival of the data will generate an interrupt).

2. If the master sends a data byte, the slave stores
it in its internal memory, acknowledges and waits
for the next data byte (the arrival of subsequent
data bytes will again generate an interrupt).

3. When the slave receives the last byte of the
transfer (there are three bytes in this example),
BYTECNT is equal to '0'. At this time, the slave
waits for the STOP bit. Once it is received, the
I2C channel will immediately terminate
communication.

Note :
When the interrupt occurs in software,
the interrupt bit (I2CI) is automatically set but
the user must clear it in the interrupt service
routine (see line CLR I2CI in the code). If it is
not cleared the slave will hold the clock line low
thus disabling further I2C transmissions.

ADuC812
(Master)

ADuC812
(S lave)

26

27 27

26SCLOCK

SDATA

5V

Pull-up
resistor

Pull-up
resistor

SCLOCK

SDATA

Start

Config SP

Config I2C

Config INT

Config RC

Config R1

Config BYTECNT

Data is stored

Config GO

BYTCNT=BYTCNT-1

BYTCNT
 =0?

End

INT?

N

Y

Y

N

2.

1.

Bit is received

3.

Using the ADuC812 I2C Interface

–9–Ver 1.0 May 1999 Technical Note uC001
 www.analog.com/microconverter

I2C COMMUNICATION (Slave-transmitter to Master-receiver)

In this mode, the master transmits the slave address and on receipt of a valid acknowledge waits for
three data bytes to be transmitted by the slave, before terminating the communication by generating a
stop bit.

As you have two ADuC812s you again need two different programs, one for the master, one for the
slave. On the next two pages, you will find the flowcharts corresponding to both master and slave
programs in a Slave-transmitter to Master-receiver mode of operation.

The slave uses this sequence of operations :

-Receive address.
-Send the acknowledge.
-Send the first data.
-Expect acknowledge.
-Send the second data.
-Expect acknowledge.
-Send the third data.
-Expect acknowledge.

The master uses this sequence of operations :

-Send a Start bit.
-Send the slave address.
-Wait for a valid acknowledge bit.
-Receive the first data.
-Send acknowledge.
-Receive the second data.
-Send acknowledge.
-Receive the third data.
-Send acknowledge.
-Send a Stop bit.

ADuC812
(Master)

ADuC812
(S lave)

26

27 27

26SCLOCK

SDATA

5V

Pull-up
resistor

Pull-up
resistor

SCLOCK

SDATA

Using the ADuC812 I2C Interface

–10–Ver 1.0 May 1999 Technical Note uC001
 www.analog.com/microconverter

FLOWCHARTS

Master software :
The flowchart on the left side describes all the
operations that occur in this mode. The master
reads slave immediately after the first byte. In this
mode, the transfer direction is changed i.e the
master first sends the slave address and then
receives three subsequent data bytes.

1. Once the I2C SFRs have been configured in
software, the master sends a START bit. Then
the master sends the slave address on the SDATA
line. In this mode the R/W status bit is set. If the
master doesn't receive an acknowledge from the
slave, it sends a STOP bit, an error bit is set and
the transfer is terminated.

2. If the slave acknowledges, the master waits for
the first data byte. Once it is received, the master
stores it in internal memory, sends an acknowl-
edge to the slave and waits for the next data byte.

3. When BYTECNT is equal to '0' which means
that the last byte of the transfer has been sent
(there are 3 bytes in this example), the master
terminates the transmission by sending a STOP
bit.

ADuC812
(Master)

ADuC812
(S lave)

26

27 27

26SCLOCK

SDATA

5V

Pull-up
resistor

Pull-up
resistor

SCLOCK

SDATA

Start

Config SP

Config I2C

Config R1

Slave address = slave address +1

Bit start

Send slave address

Config B ITCNT

Get data bit

RLC

BITCNT=BITCNT-1

BITCNT
 =0?

BYTECNT=BYTECNT-1

BYTECNT
 = 0?

Stop b it

End

N

Y

N

Y

Y

N

Save data

BYTE CNT
 =1?

ACK

N

Y

 S lave
acknowledge
 received
 ?

1 .

2.

3.

Using the ADuC812 I2C Interface

–11–Ver 1.0 May 1999 Technical Note uC001
 www.analog.com/microconverter

FLOWCHARTS

Slave software :
The flowchart on the left side describes the
operations that occur in this mode. The master
reads the slave immediately after the first byte. In
this mode the transfer direction is changed i.e the
master first sends the slave address and then
receives three subsequent data.

1. In the software, once the I2C SFRs have been
configured and after the START bit, which is
sent by the master, the slave waits for the first
data byte(the arrival of the data will generate an
interrupt). Once it is received, the slave compares
the data to its own address. If they match, the
slave sends an acknowledge bit on the SDATA
line.

2. As the R/W status bit is set, the slave sends
data that has been written previously in its
internal memory.
After it has sent the data, the slave waits for an
acknowledge from the master. After each valid
acknowledge from the master, the slave sends
another data byte and waits for the acknowledge.

3. When BYTECNT is equal to '0' which means
that the last byte of the transfer has been sent
(there are 3 bytes in this example), the master
doesn't send an acknowledge but a STOP bit, and
the transfer is terminated.

Note:
When an interrupt occurs, the interrupt bit (I2CI)
is automatically set but the user must clear it in
the interrupt routine (see line CLR I2CI in the
code). If it's not cleared the slave will hold the
clock line low thus disabling further I2C
transmissions.

ADuC812
(Master)

ADuC812
(S lave)

26

27 27

26SCLOCK

SDATA

5V

Pull-up
resistor

Pull-up
resistor

SCLOCK

SDATA

Start

Config SP

Config I2C

Config INT

Config RC

Config TR

Config BYTECNT

Config next Data

Config GO

BYTCNT=BYTCNT-1

BYTCNT
 =0?

End

INT?

N

Y

Y

N

Config RC

Config R0

Config GO

 INT?

N

Y

Stop bit

2.

3.

1.

Using the ADuC812 I2C Interface

–12–Ver 1.0 May 1999 Technical Note uC001
 www.analog.com/microconverter

CONCLUSIONS

The ADuC812 incorporates a software master, hardware slave I2C peripheral on-chip. While master
mode I2C operation will require additional software overhead as described in this Application Note,
software master mode uses the same SFR and identical I2C external pins to implement the I2C protocol
and is capable of sustaining bit-rates in excess of 100Kbs.

Even though a simple master/slave is described here, this can be easily extended to support multi-slave
configurations as shown in figure 8 below.

Programs
The software described in this Application Note can be found at Analog Devices external web site :

http://www.analog.com/microconverter

Figure 8. 1-Master, 2-Slaves

ADuC812
(Master)

ADuC812
(Slave 1)

26

27 27

26SCLOCK

SDATA

5V

Pull-up
resistor

Pull-up
resistor

SCLOCK

SDATA

ADuC812
(Slave 2)

SDATA

26

27

SCLOCK

Using the ADuC812 I2C Interface

–13–Ver 1.0 May 1999 Technical Note uC001
 www.analog.com/microconverter

FREQUENTLY ASKED QUESTIONS

Question :
When I run the code, both SDATA and SCLOCK lines stay low?

Answer :
Make sure that the external pull-up resistors (3.9k) is present and connected to +5V on each
line.

Question :
The master sends an address but there is no response from the slave?

Answer :
Be sure that the slave's I2CADD register is configured correctly .

Question :
The slave holds the value 44H in its I2CADD register, the master sends 44H but the slave
doesn't acknowledge?

Answer :
Because of the 7-bit address, the master has to send 88H or 89H (depends of the R/W status
bit). For more details see page 4 of this application note.

Question :
The master sends the slave address and receives an acknowledge from the slave ; however the
slave holds subsequently the SCLOCK line low?

Answer :
Each time the slave receives or sends a data, the interrupt bit (I2CI) is set and the slave runs an
interrupt routine. In this interrupt routine the interrupt bit (I2CI) must be cleared otherwise
the SCLOCK line will stay low.

Question :
The master sends the slave address, but it seems that the slave never reaches the interrupt?

Answer :
Make sure that both interrupt registers (IE & IE2) are correctly configured.

IE = 80H enable all interrupts.
IE2 = 01H enable I2C interrupt.

Using the ADuC812 I2C Interface

–14–Ver 1.0 May 1999 Technical Note uC001
 www.analog.com/microconverter

APPENDIX A : MASTER.ASM

;==
;
; Author : ADI - Apps
;
; Date : 7/24/98
;
; File : master.asm
;
; Description : Code for a master in an I2C system
;
;==
;
$MOD812 ;Use 8052 predefined Symbols

; Definitions

BITCNT DATA 8h ; bit counter for I2C routines
BYTECNT DATA 030h ; byte counter for I2C routines
SLAVEADD DATA 032h ; slave address for I2C routines

FLAGS DATA 28h
NOACK BIT FLAGS.0 ; I2C no acknowledge flag
BUSY BIT FLAGS.1 ; I2C busy flag
ERROR BIT FLAGS.2 ; I2C error flag
MISTAKE BIT P3.4

ORG 00H
;

JMP START
;==

ORG 07BH ; Subroutines

;--
; DELAY:Create a delay for the main signals (SCLOCK , SDATA)
;--

DELAY:
RET

Using the ADuC812 I2C Interface

–15–Ver 1.0 May 1999 Technical Note uC001
 www.analog.com/microconverter

;--
; SENDSTOP:Send the bit stop of the transmission
;--

SENDSTOP: SETB MDE ; to enable SDATA pin as an output
CLR MDO ; get SDATA ready for stop
SETB MCO ; set clock for stop
ACALL DELAY
SETB MDO ; this is the stop bit
CLR BUSY ; bus should be released
RET

;--
; SENDBYTE:Send a 8-bits word to the slave
;--

SENDBYTE:

MOV BITCNT,#8 ; 8 bits in a byte

SETB MDE ; to enable SDATA pin as an output
CLR MDO
CLR MCO

LOOP:RLC A ; send one bit
MOV MDO,C ; put data bit on pin
SETB MCO ; send clock
CLR MCO ; clock is off
DJNZ BITCNT,LOOP

CLR MDE ; release data line for acknowledge
SETB MCO ; send clock for acknowledge
JNB MDI,NEXT ; this is a check

SETB NOACK ; no acknowledge

NEXT:CLR MCO ; clock for acknowledge
RET

Using the ADuC812 I2C Interface

–16–Ver 1.0 May 1999 Technical Note uC001
 www.analog.com/microconverter

;--
; BITSTART:Send the bit start of the transmission and the slave address to the slave
;--

BITSTART: SETB BUSY ; I2C is in progress
SETB MDE ; to enable SDATA pin as an output

CLR NOACK
CLR ERROR
JNB MCO,FAULT
JNB MDO,FAULT
CLR MDO ; this is
ACALL DELAY ; the
CLR MCO ; start bit

FAULT:
CLR MISTAKE ; set error flag
MOV A,SLAVEADD ; Get slave address
ACALL SENDBYTE ; call the routine to send the slave address byte
RET

;--
; SENDATA:Send all the sequence to the slave (slave address + data)
;--

SENDATA: ACALL BITSTART
JB MDI,NEXT1
MOV A,#00

SLOOP:
MOVX A,@DPTR
ACALL SENDBYTE
INC DPTR
JB NOACK,NEXT1
DJNZ BYTECNT,SLOOP

NEXT1:
ACALL SENDSTOP
MOV A,FLAGS
ANL A,#07h
JZ RETOUR
SETB P3.4
CLR RST

RETOUR:
RET

Using the ADuC812 I2C Interface

–17–Ver 1.0 May 1999 Technical Note uC001
 www.analog.com/microconverter

;---
; RCVBYTE:receives one byte of data from an I2C slave device.
; --

RCVBYTE: MOV BITCNT,#8 ;Set bit count.

CLR MDE ;Data pin of the master is now an input
CLR MCO

LOOP2: SETB MCO
CLR MCO
MOV C,MDI ;Get data bit from pin.
RLC A ;Rotate bit into result byte.

DJNZ BITCNT,LOOP2 ;Repeat until all bits received.

;result byte is in the accumulator

PUSH ACC ;Save result byte in the stack

SETB MDE ;Data pin of the master must be an output for
;the acknowledge

MOV A,BYTECNT
CJNE A,#1,SACK ;Check for last byte of frame.
SETB MDO ;Send no acknowledge on last byte.
SJMP NACK

SACK:
CLR MDO ;Send acknowledge bit.

NACK:
SETB MCO ;Send acknowledge clock.
POP ACC ;Restore accumulator
ACALL DELAY
CLR MCO
SETB MDO ;Clear acknowledge bit.
ACALL DELAY
CLR MDE

RET

Using the ADuC812 I2C Interface

–18–Ver 1.0 May 1999 Technical Note uC001
 www.analog.com/microconverter

;---
;RCVDATA:receives one or more bytes of data from an I2C slave device.
;---

RCVDATA:
INC SLAVEADD ;Set for READ of slave.
ACALL BITSTART ;Acquire bus and send slave address.
JB NoAck,RDEX ;Check for slave not responding.

RDLoop: ACALL RCVBYTE ;Receive next data byte.
MOV @R1,A ;Save data byte in buffer.
INC R1 ;Advance buffer pointer.
DJNZ BYTECNT,RDLoop ;Repeat untill all bytes received.

RDEX: ACALL SENDSTOP ;Done, send an I2C stop.
RET

;---
; Main program
;---

START: ; Main program
MOV SP,#040h
CLR NOACK
MOV SLAVEADD,#088H
MOV BYTECNT,#3
MOV I2CCON,#0A8h

; code for a write mode (master-transmitter transmits to slave-receiver)

; MOV DPTR,#080H ; master transmits to slave
; MOV A,#055H ; datas which are located in
; MOVX @DPTR,A ; the external memory
; MOV DPTR,#081H
; MOV A,#044H
; MOVX @DPTR,A
; MOV DPTR,#082H
; MOV A,#033H
; MOVX @DPTR,A

; MOV DPTR,#080h
; ACALL SENDATA

; code for a read mode (master reads immediately after first byte)

MOV R1,#035h
ACALL RCVDATA

END

Using the ADuC812 I2C Interface

–19–Ver 1.0 May 1999 Technical Note uC001
 www.analog.com/microconverter

APPENDIX B : SLAVE.ASM

;==
;
; Author : ADI - Apps
;
; Date : 7/24/98
;
; File : slave.asm
;
; Description : Code for a slave in an I2C system
;
;==
;
$MOD812 ;Use 8052 predefined Symbols

; Definitions

BYTECNT DATA 030h ; byte counter for I2C routines

FLAGS DATA 28h
GO BIT FLAGS.0 ; flag for all the interrupts
RC BIT FLAGS.1 ; flag for Write mode interrupt
TR BIT FLAGS.2 ; flag for Read mode interrupt

ORG 00H
;

JMP START ; jump to label 'start'

;==

ORG 03Bh ; I2C slave interrupt

JB RC,RECEIVE ; depending on flags there
JB TR,TRANSMIT ; are two different interrupts

;==

Using the ADuC812 I2C Interface

–20–Ver 1.0 May 1999 Technical Note uC001
 www.analog.com/microconverter

ORG 07BH ; Subroutines

;--
;RECEIVE: receive interrupt routine
;--

RECEIVE:
SETB GO
MOV @R1,I2CDAT; move data on internal RAM
CLR ISI ; clear interrupt bit
RETI

;--
;TRANSMIT: transmit interrupt routine
;--

TRANSMIT:
SETB GO
MOV I2CDAT,R0
CLR ISI ; clear interrupt bit
RETI

;--
;RCVBYTE2:receive byte routine for read mode
;--

RCVBYTE2:

NOP
RET

;--
;RCVBYTE:receive byte routine
;--

RCVBYTE:

WAIT1:
JNB GO,WAIT1 ; wait for the interrupt
INC R1 ; next storage will be on 41h then 42h ...
CLR GO ; flag is cleared for the next interrupt
RET

Using the ADuC812 I2C Interface

–21–Ver 1.0 May 1999 Technical Note uC001
 www.analog.com/microconverter

;--
;RCVDATA:receive bytes routine
;--

RCVDATA:

MOV BYTECNT,#4 ; 4 bytes : address + 3 datas
LOOP2: ACALL RCVBYTE

DJNZ BYTECNT,LOOP2
RET

;--
;SENDBYTE:byte transmit routine
;--

SENDBYTE:

WAIT2:JNB GO,WAIT2 ; wait for the interrupt
INC R0 ; second data is 34h and third data is 35h
CLR GO
RET

;--
;SENDATA:bytes transmit routine
;--

SENDATA:
MOV BYTECNT,#3 ; 3 data will be send by the slave

LOOP: ACALL SENDBYTE
DJNZ BYTECNT,LOOP
RET

Using the ADuC812 I2C Interface

–22–Ver 1.0 May 1999 Technical Note uC001
 www.analog.com/microconverter

;--
;Main program
;--
START:

CLR GO ; clear flag used in the interrupt
MOV I2CADD,#044h ; slave address
MOV SP,#020h
MOV IE,#80h ; enable all the interrupts
MOV IE2,#01h ; enable I2C interrupt
MOV I2CCON,#000h ; slave mode

; code for a write mode (master-transmitter transmits to slave-receiver)

; SETB RC ; specific flag for the interrupt routine
; MOV R1,#040h ; first data will be store in internal RAM at 40h
; ACALL RCVDATA ; slave receives his address + 3 datas

; code for a read mode (master reads slave immediately after first byte)

SETB RC ; specific flag for the interrupt routine
MOV R0,#033h ; first data send is 33h
ACALL RCVBYTE2 ; slave receives the address send by the master
CLR RC
SETB TR
ACALL SENDATA ; slave sends 3 datas

CLR P3.4 ; led is off, everything is OK

END

