											RE	VISK	ONS	i												
LTR								ESC	RIPT	1ON									DATE	(YR-	MO-D	(A)	A	PRO	WED	
																					-					
																						ı				
	l																	ı				•				
																										F
																										1
																										1
																										l
																										Ì
																								ł		
																								İ		
																										ļ
														_			П				Г	Ι			Γ	П
REV		_	_		\vdash		-	┝	<u> </u>	_	H	-	Н		-	-	H			_	-	┢	-		┝	H
REV	'	_	_	_				┝	-	-	_	_	Н		┢	 					-	十	<u> </u>		一	H
SHEET	,		Н		┢─	_	\vdash		_		-			_	<u> </u>							Γ	T		Τ	П
REV S		T	RE	V	L		T	┢		Г																
OF SI		r	SH	EET		1	2	3	4	5	6	7	8	9	10	11										
PMIC	V/A					PRE	PARE	D BY)		/									00.0		V ^*		.	1
					\neg	从	CHECKED BY						4		DE	FENSI	E ELI DA	YTO	N, OH	US S HO 4	UPPI 15444	LY CE	:NIĒ	ĸ	- 1	
	NDAF			D		Kay Monnin					-	MICE	OCT	RCUI	TS.	IIN	EAR	LUM	I-POV	VER	OPER	ATIO	ONAL.			
	WILIT/ DRAW					AP	APPROVED BY					1	AMPL	İFI	ERS,	MON	IOL I	THIC	SI	LIC	ON		.,,,			
1	RAWING			ARI F	. {	1.	1		4	4	4			+	-						T					
FOR US	E BY ALL D AGENC	, DEF	PART	Men	TS		awin Iarci		PROV 89	AMO	7				SIZE			AGE			١	50	62	-8 1	85	59
DEPA	RTMENT	OF I	DEFE	NSE									-	╁	_	1						_				
AMS	C N/A						REVISION LEVEL							SHEET 1 OF 11												

DESC FORM 193 SEP 87

 \star U.S. Government printing office: 1987 — 748-129/60911 $5\,962\text{--}E7\,96$

·			
1. SCOPE			
1.1 Scope. This dra with 1.2.1 of MIL-STD-8 non-JAN devices".	awing describes device reaut 383, "Provisions for the use	rements for class B mic e of MIL-STD-883 in conf	procircuits in accordance iunction with compliant
1.2 Part <u>number</u> . Th	ne complete part number shal	1 be as shown in the fo	ollowing example:
<u>5962-88559</u>	<u>01</u> ! !	C 	X
Drawing num	ber Device type (1.2.1)	Case outline (1,2,2)	Lead finish per MIL-M-38510
1.2.1 <u>Device types</u> .	The device types shall iden	ntify the circuit funct	ion as follows:
<u>Device type</u>	Generic number	Circuit function	
01 02	OP421B OP421C	Quad low-power ope Quad low-power ope	rational amplifier rational amplifier
1.2.2 <u>Case outline</u> , follows:	The case outline shall be a	as designated in append	ix C of MIL-M-38510, and as
<u>Out1</u>	ine letter	Case out	
		-lead, .785" x .310" x	.200"), dual-in-line package
1.3 Absolute maximum	<u>ratings</u> .		
V Differential input Input voltage (V _{II} Internal power distorage temperatur Lead temperatur Junction temperatur Thermal resistance	t voltage	18 V +30 V or -30 Supply voltag 500 mW 65°C to +150 +300°C	ge
1.4 Recommended opera			•
Ambient operating	temperature range (T_{A})	55°C to +125	5 ° C
1/ Derate above +100°C,	, 10 mW/°C.		

STANDARDIZED MILITARY DRAWING	SIZE A	Δ			5962-88559		
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444			REVISION LEVEL	•	SHEET	2	

2. APPLICABLE DOCUMENTS

2.1 Government specification and standard. Unless otherwise specified, the following specification and standard, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510

- Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883

- Test Methods and Procedures for Microelectronics.

(Copies of the specification and standard required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.

3. REQUIREMENTS

- 3.1 Item requirements. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- 3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
 - 3.2.1 Terminal connections. The terminal connections shall be as specified on figure 1.
 - 3.2.2 Case outline. The case outline shall be in accordance with 1.2.2 herein.
- 3.3 Electrical performance characteristics. Unless otherwise specified, the electrical performance characteristics are as specified in table I and apply over the full ambient operating temperature range.
- 3.4 Marking. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be marked as listed in 6.4 herein.
- 3.5 Certificate of compliance. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in 6.4. The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply shall state that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.6 Certificate of conformance. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.
- 3.7 Notification of change. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-883 (see 3.1 herein).

STANDARDIZED MILITARY DRAWING	SIZE A		5962-88559
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVE	L SHEET 3

DESC FORM 193A SEP 87

Took	Comb = 3	ı	C 111.	!			_	
Test	Symbol 	V+ =	Conditions < T _A < +125°C 15 V, V- = -15 V less otherwise	Device types 	Group A subgroups			Unit
	<u> </u>	un 	specified			Min 	Max	
Input offset voltage	۸10		2.5 V to +15 V 2.5 V to -15V	01	1	 	* 2.5	m V
	ļ				2,3		±3,5	-
		 		02	1		± 4.0	-
		 			2,3		 ±5 .5 	
Input offset current	110	 V+ = +2 V- = -2	2.5 Y to +15 Y 2.5 Y to -15 Y	01	1	 	 * 5.0 	
	 	 		:	2,3		±8.0	nA.
		 		02	1		±10.0	
	 	 			2,3		±15.0	
Input bias current	IB	 V+ = +2 V- = -2	2.5 V to +15 V 2.5 V to -15 V	01	1] 	 ±50 	
				 	2,3		 ±70 	nA.
	 			02	1	 	#80 	-
]]			2,3]	 *125	Ī
Input voltage range	IVR	 Y+ = 5	V, V- = 0 Y		1	0.0	+3.5	γ
1/	 			 All	2,3	0.0	+3.2	-
		V+ = 15	V V- = -15 V		1	-15.0	+13.5	-
	İ			Ì	2,3	-15.0	+13.2	-
ee footnotes at end of	table.					·		
STANDARDI MILITARY DR			SIZE A		59	962-88	559	
MILITARY DRA		YTER		REVISION LEVE		SHEET		

Common-mode rejection ratio	Test	Symbol	Conditions -55°C < TA < +125°C V+ = 15 V, V- = -15 V	Device types	Group A subgroups	Lim	its	Unit
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			unless otherwise	 		Min	Max	
Power supply rejection PSRR $V = 2.5 V V = -2.5 V, V = -15 V, V = 15 V V = -15 V, V = 0 V, V = 15 , V = 0 V, V = 0 V, V = 0 V, V = 0 V, V = 0 V, V = 0 V, V = 0 V, V = 0 V, V = 0 V, V = 0 V, V = 0 V, V = 0 V, V = 0 V, V = 5 V, V = 0 V, V = 5 V, V = 0 V, V = 5 V, V = 0 V, V = 5 V, V = 0 V, V = 5 V, V = 0 V, V = 5 V, V = 0 V, V = 5 V, V = 0 V, V = 5 V, V = 0 V, V = 5 V, V = 0 V, V = 5 V, V = 0 V, V = 5 V, V = 0$	Common-mode rejection ratio	CMRR	V+ = +5 V, V- = 0 V, 0 V \(\left \) VCM \(\left \) +3.5 V	01	4	83	 	dB
O V \(\subseteq V_{CM} \(\leq +3.5 \) V O2			0 V < V _{CM} < +3.2 V		5,6	78		<u>[</u>
O V ≤ V _{CM} ≤ +3.2 V			0 V < V _{CM} < +3.5 V	02	4	80		
Power supply rejection ratio PSRR V+ = 2.5 V V- = -2.5 V, V+ = 15 V V- = -15 V V+ = 5 V V- = 0 V, V+ = 5 V to 30 V 01 5,6 78 02 4 80 01 5,6 74 01 4 30 4 50 02 4 50			V+ = +5 V, V- = 0 V, 0 V <u><</u> V _{CM} <u><</u> +3.2 V		5,6	74		
Power supply rejection PSRR				01	4	83	! ! !	
Power supply rejection PSRR		 	 -15 V < V _{CM} < +13.5 V,	! 	5,6	78	 	! <u> </u>
Power supply rejection PSRR				 02	4	80		! ! <u> </u>
ratio V+ = 15 V V- = -15 V, 01		 	 	 -	5,6	74		
V- to V+ = 5 V to 30 V		IPSRR	V+ = 15 V V- = -15 V,	 01	4		30	 μV/\
02			V+ = 5 V	 	5,6		50	! ! !
5,6 80			 	 02	4		50	Γ ! <u>!</u>
		! !	 	 	5,6		80	

SIZE

REVISION LEVEL

DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444

DESC FORM 193A
SEP 87

STANDARDIZED

MILITARY DRAWING

5

5962-88559

SHEET

Test	Symbol	-55°	Conditions	 Group A subgroups	l İLİm İ	 Unit 		
		V+ ₌	15 Y, Y- = -15 Y inless otherwise specified	types		Min	Max	i. ! !
Supply current (four amplifiers)	Isy	V+ = 2 no loa	2.5 Y Y- = -2.5 Y,	01	1		1.0	l mA
		 		 	2,3	! !	1.5	! -
		! !		02	1	! 	1.5	
		!] 		 	2,3	! !	2.0	
		 V+ = 1 no loa	5 V V- = -15 V,	01	1		 1,8 	Γ
		! ! !			2,3		2.5	[·
		 		02	1		2,3	
		 		 	2,3		3.2	
Large-signal voltage gain	Avo	V _O = ±	10 V, 0 kΩ		4	200		
	$V_0 = \pm 10$ $R_L = 20$ $V_0 = \pm 10$ $R_L = 10$			01 	5,6	100		_ V/mV
				02	4	100	,	- ',
		Y ₀ = ±	10 V, 0 kΩ	-j ! !	5,6	50		-
ee footnotes at end of	table.							
					•	with a	***	
STANDARDI			SIZE A			62-885		
MILITARY DRA	AWING				93	JL-003		

Test	Symbol	-55°C	Condition _≤ TA ≤ 1	s 125°C	Device types	Group A subgroups	Lim	Unit	
			15 V, V- less othe specific	rwise			Min	 Max 	
Output uslines suine	 V-	 Y+ = 5 \	,	5 kΩ	01	4	0.7	+4.0	V
Output voltage swing	v ₀ 	Y- = 0 \ Y- = 0 \			02	4	0.8	+3.9	<u>.</u>
		 	 R _L =	10 kΩ	01	5,6	0.8	 +3.9	[
	 	 			02	5,6	0.9	 +3.8 	
	ļ	<u> </u>	R _L =	10 kΩ	01	4	-14	+14	<u> </u>
	 	 V+ = 15\	,		02	4	-13.9	+13.9	
	 	V- = -15	ĺ	20 kΩ	01	5,6	-13.8	+13.8	[] <u>[</u>
	 	! !			02	5,6	-13.7	+13.7	
Slew rate <u>2</u> /	SR 	T _A = +25°C			All	7	0.25	i 	 V/μs
Channel separation 2/	cs	TA = +25	5°C		i All	7	100		dB
Input noise voltage <u>2</u> / density	l E _n	$f_0 = 10 \text{ Hz}, T_A = +25^{\circ}\text{C}$			A11	7	40		 nV/./H.
	 	f ₀ = 100	Hz, TA	= +25°C	_ 		30		
Input noise current density 2/	In	f ₀ = 10 T _A = +25	Hz C		I All	7	.6		pA/JHz
	 	f ₀ = 100 T _A = +25	Hz C		_ <u> </u>		.4		
Average input offset voltage drift	i Itcv _{io} I	 			i 01	2,3	-10	10	μ V /°(
-	 !] 			02		-15	15	
/ IVR is guaranteed by C	MRR test	•							
/ Guaranteed if not test	ed.								
STANDARDIZ			SIZE A			59	062-88!	559	
MILITARY DRA DEFENSE ELECTRONICS S	-	NTER	-	RE	VISION LEVEL		SHEET	7	

 Device types 	01 and 02
Case	С
Terminal number	Terminal symbol
1 2 3 4 5 6 7 8 9 10 11 12 13	OUT 1 -IN 1 +IN 1 +IN 2 -IN 2 -IN 2 OUT 2 OUT 3 -IN 3 +IN 3 +IN 3 V - +IN 4 -IN 4 OUT 4

FIGURE 1. Terminal connections.

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, CHIO 45444

SIZE
A
5962-88559

REVISION LEVEL
SHEET 8

- 3.8 Verification and review. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
 - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 Screening. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 8, 9, 10 and 11 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - 4.3.2 Groups C and D inspections.
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test conditions, method 1005 of MIL-STD-883:
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-88559
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 9

TABLE II	. E1	ectrical	test	requirements.

MIL-STD-883 test requirements	Subgroups (per method 5005, table I)
Interim electrical parameters (method 5004)	1,4
 Final electrical test parameters (method 5004)	1*,2,3,4,5,6
Group A test requirements (method 5005)	1,2,3,4,5,6,7
Groups C and D end-point electrical parameters (method 5005)	1

^{*} PDA applies to subgroup 1.

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.

6. NOTES

- 6.1 Intended use. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
- 6.2 Replaceability. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 Comments. Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone $513-\overline{296}-5375$.

STANDARDIZED	
MILITARY	DRAWING

DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444

SIZE 5962-88559

REVISION LEVEL SHEET 10

6.4 Approved source of supply. An approved source of supply is listed herein. Additional sources will be added as they become available. The vendor listed herein has agreed to this drawing and a certificate of compliance (see 3.5 herein) has been submitted to DESC-ECS.

Military drawing part number 	Vendor CAGE number	Vendor similar part number 1/
5962-8855901CX	06665	OP421BY
5962-8855902CX	06665	OP421CY

1/ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

> Vendor CAGE number

Vendor name and address

06665

Precision Monolithics Incorporated 1500 Space Park Drive P.O. Box 58020 Santa Clara, CA 95050-8020

STANDA	RDIZED
MILITARY	DRAWING

DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444