
a

ADV601 Video Codec Design Considerations

by David Starr

AN-525
APPLICATION NOTE

ONE TECHNOLOGY WAY • P.O. BOX 9106 • NORWOOD, MASSACHUSETTS 02062-9106 • 617/329-4700

OVERVIEW

This Applications note is for hardware and software de-
signers starting an ADV601 design. Using this note and
the information in the ADV601 Video Codec data sheet
you can do the following:

Design ADV601 based video compression hardware.
Write software drivers and hardware diagnostic
programs.
Integrate your hardware into the PCI bus and your
software into Windows 95.

The design examples in this application note refer to
the ADV601 based Videolab demonstration board, but
you can apply the techniques used in these examples
to any ADV601 based design. The software source code
and hardware schematics mentioned in this note are
available on the Analog Devices computer products
FTP site, whose Uniform Resource Locator (URL) is:

ftp://ftp.analog.com/pub/dsp/adv601/

VCLK (VIDEO CLOCK) FREQUENCY FOR SQUARE AND

NONSQUARE PIXELS

The ADV601 uses the VCLK signal for internal process-
ing, DRAM timing, and strobing in video data. The
ADV601’s internal PLL multiplies VCLK up to generate
the DRAM /CAS and /RAS timing. Use only the clock fre-
quencies listed on the data sheet under “Clock Pins,”
even in nonreal-time applications. You must set the
mode control register bits P/N (PAL/NTSC) and SPE
(Square Pixel Enable) to match the selected VCLK fre-
quency. For instance, if VCLK is 29.5 MHz, then set both
P/N and SPE equal to one for the ADV601 to function
properly. If you intend to switch square pixel enable on

and off, then you must also vary the clock frequency to
match. Pulse to pulse jitter on VCLK should be less than
1 ns. The part is designed to function with VCLK phase
locked to the horizontal sync. There is enough tolerance
in the clock circuit to track the horizontal timing varia-
tions caused by tape speed variations (flutter and wow)
on consumer grade VHS video cassette recorders
(VCRs).

COMPRESSED VIDEO DATA INTERFACE DESIGN ISSUES

The compressed video data bus must support a high
data rate. Raw video comes into the part at 12 to
14 Megapixels/sec. Video will come out of the part just
as fast at low compression ratios. The compression ratio
can vary from its programmed value, causing the video
data rate to increase (or decrease, but the increase
causes the difficulty). A slow compressed video bus will
cause the ADV601’s internal FIFO to underflow or over-
flow, resulting in lost frames on capture, and torn
frames on playback. Difficulty may occur if the com-
pressed video bus is slower than 5 Megabyte/sec. The
Analog Devices evaluation board uses a Bus Master PCI
bus interface capable of 16 Megabyte/sec.

Many applications capture and playback video to/from
hard disk. In this case the disk is the limiting factor in
system throughput. However, if the disk and the ADV601
reside on the same bus (for example, a PCI bus system),
bus bandwidth may also be a factor. If the video goes
from the ADV601 card to main memory, and then from
main memory to disk, then bus traffic is double what it
would be if the video went directly from the ADV601 to
the disk controller with no halfway stop in main

BIDIRECTIONAL
RAW VIDEO BUS

ADV601

BIDIRECTIONAL
COMPRESSED
VIDEO BUS

VIDEO
INPUT

VIDEO
OUTPUT

WAVELET
TRANSFORM

HUFFMAN
CODER

DRAM

Figure 1. Video Signal Flow

–2–

memory. Burst mode, where the hardware acquires the
bus, asserts one address, and transfers a block of data
will give best performance. The bus hardware may not
be fast enough if it must acquire the bus and assert an
address for each word transfer.

FIFO STATUS SIGNALS FIFO_SRQ, FIFO_STP, FIFO_ERR

FIFO_STP

FIFO_STP is a combined FULL and EMPTY pin. On en-
code it signals EMPTY, on decode it signals FULL. It
means stop moving data into or out of the FIFO.
FIFO_STP is asserted quite late and it can be difficult for
hardware to see the FIFO_STP signal in time to halt the
next FIFO transfer. In this case, an extra read will move
invalid data, and an extra write will trash a word already
inside the FIFO.

FIFO_SRQ

FIFO_SRQ is a combined NEARLY FULL and NEARLY
EMPTY bit. On Encode it signals NEARLY FULL, and
on DECODE is signals NEARLY EMPTY. NEARLY (the
service request trigger point) is programmed via the
FIFO Control Register over the range 32 to 480 long
words. FIFO_SRQ is easier to use for data transfer con-
trol than FIFO_STP, because there is no penalty for mov-
ing one or two words after FIFO_SRQ goes away.
FIFO_SRQ will go away at least 32 reads or writes before
FULL or EMPTY occurs. The size of each data transfer
can be controlled by programming NEARLY. Setting
NEARLY to half full (256 words) will cause the hardware
to move at least 256 words for each service request. This
can be advantageous if there is significant overhead re-
quired to set up each bus transfer. Overhead might be
such things as arbitrating for the bus, entering host in-
terrupt service, or asserting the data address.

FIFO_SRQ can reoccur very rapidly. The host and the
ADV601 are racing each other through the FIFO. It is pos-
sible for the host to transfer a single word that clears the
FIFO service request and on the very next VCLK, the
ADV601 can transfer a word that sets the FIFO service
request again. FIFO_SRQ is asynchronous to the host
port. Take care not to violate setup and hold time
requirements of host port hardware.

FIFO_ERR

FIFO_ERR is a combined EMPTY and FULL pin. On
decode it signals EMPTY and on encode it signals FULL.
This is the reverse of FIFO_STP. When asserted, the host
is falling behind.

BIN WIDTH CALCULATION BASICS

Off-chip computation by either the host or a dedicated
DSP is required to control the compression ratio during
encode. The Wavelet transformer output is 16-bits wide.
To increase the compression ratio, some low order bits
must be discarded before the run length and Huffman
coders. This increases the length of the zero runs lead-
ing to more data compression. The ADV601’s adaptive
quantizer discards low order bits by multiplying every

sample in the bin by a user specified fraction, called the
reciprocal bin width. On playback, the sub-bands are
restored to proper size by multiplication by a user speci-
fied coefficient called the bin width. Each of the 42 sub-
bands has its own bin width and reciprocal Bin Width
Register. The bin widths are embedded in the com-
pressed data stream during the encoding process. On
decode, the ADV601 extracts the bin widths from the
compressed data stream and multiplies each sample by
the bin width to bring it back up to proper size. Bin Width
Registers are of concern on encode only, nothing need
be put in the registers for decode.

Computation of a Bin Width Register is straight forward,
merely take the reciprocal of the corresponding recipro-
cal Bin Width Register. Remember that the reciprocal
Bin Width Registers are scaled 6.10 and the Bin Width
Registers are scaled 8.8 and scale your reciprocal calcu-
lation accordingly.

The number of bits required to encode an image varies
with the busyness of the image. A plain solid black field
will encode very compactly since there is no high fre-
quency energy in the picture. The higher sub-bands are
all zero everywhere. On the other hand something like a
close-up of a plaid shirt has a lot of high frequency en-
ergy and will call for more bits to encode. As the picture
gets busier, you need to use a smaller fraction in the re-
ciprocal bin width registers.

At the end of each field, the ADV601 supplies the bin
width computer with the sum of the squares of each
sub-band as a measure of the busyness. These (and a
few other numbers) are referred to as “statistics”. As the
sum of the squares gets larger, the reciprocal bin widths
need to get smaller.

This bin width computation works best if done quickly.
The ADV601 will present the statistics just as vertical re-
trace is beginning. The bin width computer needs to
read all the statistics, compute 42 reciprocal bin widths
and 42 bin widths, and write the new setting back into
the ADV601 before the next field starts. Next field starts
in 20 horizontal line times or about 1.2 milliseconds. The
computation needs to be repeated once per field, or
every 16 milliseconds. The computation load will be
about 1.2 milliseconds every 16 milliseconds or 7%. This
assumes that the bin width calculation is actually com-
pleted within the 1.2 millisecond deadline. If not, the
ADV601 will use the existing bin width setting on the
new field. Since one field is much like another field, no
great harm is done.

DIAGNOSTICS AND DEBUGGING STRATEGY

In testing out a new design it is important to get simple
things working before testing more complex features.
For instance the host interface has to successfully write
the ADV601 mode control register before it is reason-
able to expect video data transfer to work. Listed below,
in order, are the diagnostic tests used to bring up the
Analog Devices evaluation board.

–3–

16-Bit Data Interface (Bin Width Register) Test

First check the data interface into the part. If the data is
not getting into and out of the part reliably, almost any-
thing can go wrong. Data errors can cause the part’s in-
ternal registers to program with unexpected values,
causing unexpected operation. For instance, failure to
set the encode/decode bit as intended will cause the part
to drive an unexpected bus. Consider configuring the
hardware for video capture. The video A/D will drive the
raw video bus. If a data error causes the ADV601 to
come up in decode mode by mistake, it too will drive the
raw video data bus, causing both parts to get hot (or
worse). The possibilities for unexpected behavior are
broad, and defy analysis.

Test the data interface by writing data into the part and
reading it back. Data read back shall match data written
in. The 16-bit wide bin width and reciprocal Bin Width
Registers are read/write, and hence testable, unlike
other registers such as the mode control register. The
bin width and reciprocal bin width registers, have ad-
dresses 100 to 153 (hex). The test should prove that each
bit in each register can store both a one and a zero. It
should prove that all 84 registers are unique by storing a
different test value into each one and reading it back.
The test should write all 84 registers and then read all of
them back. It must not write one, read one and move to
the next. It should take advantage of the auto
incrementing feature of the Indirect Address Register to
write and read all 84 registers in one swoop. Example
code is in file wavetest.c (a part of 601 test), and
adv601.c (a part of 601cman). This code is on the
Videolab CD-ROM and on the ADV601 FTP site.

As soon the Bin Width Register test runs once, put the
program into a loop and test repeatedly. The new design
should run overnight with no errors before the data in-
terface can be considered free of timing errors.

A successful Bin Width Register test verifies the indirect
address register, the indirect data register, the low 16
bits of the data bus , and the following pins, byte en-
ables BE0 and BE1, addresses ADR0 and ADR1 , CS, WR,
RD, and ACK. The ADV601 host interface handles all reg-
isters identically, so Bin Width Register test success
gives confidence that writes to other read only registers
function properly. Bin Width Register test failure sug-
gests that other registers may not read or write properly,
which throws doubt on the results of any other tests.

32-Bit Data Interface (FIFO) Test

A read / write test of the FIFO will verify all 32 bits of the
data bus since the FIFO port is 32-bits wide. Use the
same test data patterns as the Bin Width Register test
uses, for the same reasons. The procedure for writing
test data into the ADV601 FIFO is the same as for any
video data. Reset the part, initialize it in decode mode,
and write the FIFO data port until the FIFO is full. Write
512 long words and read them back. Read back requires
the chip be placed into a special test mode. Do this by
resetting the chip, and putting it into encode mode. Set
the 100 bit in the FIFO control register. Example code is

in 601 test module wavetest.c Then just read the FIFO
port. Resetting the chip merely zeroes the FIFO read and
write pointers. Data in the FIFO is not altered. Again, af-
ter the test runs once, by hand, loop it over night to de-
tect intermittent errors. It took some time to resolve all
the PCI bus interface problems on the Analog Devices
Videolab design. As above, failure of the FIFO test sug-
gests that the interface is dropping bits and corrupting
the video. This casts doubt on the results of any other
tests. The FIFO test will fail if the host cannot access the
ADV601 control registers which the Bin Width Register
test checks out.

Color Ramp Test

Color Ramp tests video decoding, which is easier than
encoding. Color ramp is a simple ramp in both Luma
and Chroma. This special case encodes VERY com-
pactly, only 2440 bytes are required to encode a com-
plete frame of video. This is small enough to fit into the
memory of any micro processor. Putting the test pattern
into memory sidesteps all problems of disk speed, disk
latency, seek time, thermal recalibration time, disk frag-
mentation, and bus contention. Your test program
merely keeps loading the color ramp pattern into the
ADV601 FIFO whenever the part asserts FIFO Service
Request. It has a whole frame time (33 milliseconds) to
load 2440 bytes, for a very modest data rate of 74 Kilo-
bytes per second. The test passes when the color ramp
pattern appears on the video monitor. The color ramp
test should run forever (at least over night) to detect in-
termittent problems. Color ramp exercises the complete
video decode path through the ADV601, plus the video
decoder, if your design has one. If color ramp runs but
captured video does not, the problem is either speed
(host can’t load FIFO fast enough) or encode. The color
ramp data can be found in file c_ramp.c, a part of the
601test program available on the FTP site.

Bin Width and Reciprocal Bin Width Register Settings

To get the chip up and encoding initially, load the bin
width and reciprocal Bin Width Registers with one
“canned” set of values that will quantize each frame
heavily (high compression). The high compression will
reduce the data rate out the compressed data port (FIFO)
and avoid FIFO overrun if the host is slow for some rea-
son. Successful video capture means the captured video
plays back properly. After successful capture, then it is
time to enable the statistics ready interrupt, read the sta-
tistics, and compute a new set of bin widths for each
frame. This interrupt service can be tricky to get right.
Errors can cause the part to output data furiously, caus-
ing a FIFO overrun. “Canned” bin width sets can be
found on the FTP site.

AVOID BUS FIGHTS

Both the raw and compressed video buses (VDATA and
DATA) are bidirectional buses, the ADV601 can either
read them or write them. The design must insure that
two chips do not drive the same bus at the same time,
especially when coming out of reset or switching be-
tween encode and decode. The ADV601 comes out of

required attention. There are many reasons (six to be
exact). Reading the interrupt mask/status register clears
and re arms all of the interrupts. In other words, reading
the register acknowledges the interrupt to the ADV601
saying in effect “I’ve seen you, now go away and inter-
rupt me again the next time it happens”. This has two
side effects on host software. First, reading the register
clears the bits, so a second read of the register won’t
return the same data. Second, if the condition causing
the interrupt re occurs or another condition occurs, the
chip will interrupt again. An interrupt routine might do
the following things:

Insure that it won’t be re entered if the interrupt stays
“hot” or is reasserted during interrupt service.

Read the interrupt status register once, and service all
the things that need service. For instance sooner or later
both statistics ready and FIFO service request will occur
at the same time.

When all servicing is done, read the interrupt status reg-
ister one more time in case something came up during
service time. If so, service the new condition.

Avoid becoming stuck in interrupt service if the interrupt
stays “hot” no matter how much service the part is
given.

CRUCIAL WIN95 SETTINGS

You may be able to correct FIFO under runs or over runs
(FIFO_ERR bit gets set) by turning off CD-ROM auto in-
sert notification in Win 95. Go to “Settings” then “Con-
trol Panel”. Click on “System” (a blue screen computer
icon). Click on the “Device Manager” tab. This will dis-
play all the devices on the system. Click on the CD-ROM
icon, which should then expand one level. Go down and
click on “Properties”. Pick the “Settings” tab. Clear the
check mark in the “Auto Insert Notification” box.

It may also be necessary to remove the Win 95 “handi-
capped accessibility “ option. While still on the “Control
Panel” click on “Add/Remove Programs”. Select the
“Windows Setup” tab. Remove the “Accessibility Op-
tions (Icon of a wheelchair). These two changes cured
FIFO over runs that occurred every 10 seconds and
every 5 minutes.

P
R

IN
T

E
D

 IN
 U

.S
.A

.
00

00
00

00
0

reset reading the VDATA bus. If you rely upon software
to initialize chips consider what will happen when the
software fails. The ENC pin out of the ADV601 goes low
when the part is driving the VDATA bus, and can be used
as output enable for the other chips on the bus.

TEST POINTS AND LEDS

On a new design it will be necessary to observe each pin
of the ADV601 with a logic analyzer. The first Analog
Devices Videolab board had four 40-pin headers right on
the board. If headers won’t fit, Ironwood Electronics
makes a series of “chip extenders” that give logic ana-
lyzer access. Placing LEDs on the following pins can
greatly speed up hardware and software debug.

Pin Name Led Indication

FIELD Glows 1/2 bright when video is running.
FIFO_SRQ Activity when video is running.
HIRQ Activity when video is running. Full

bright after software crash.
ENC Verifies that software put the part into

encode mode at the right time.
RESET Signals un expected reset.
FIFO_ERR Should never happen.

HARDWARE VS. SOFTWARE RESET

The ADV601 has both a hardware reset pin, and a reset
bit in the mode control register. Hardware reset must be
asserted once at power up. Driver software will be easier
to write if it too can assert hardware reset as a way of
placing the chip into a known initial state. The hardware
reset bit loads initial values into all the ADV601 registers
that have defined initial values. Asserting the software
reset bit in the mode control register makes the chip
stop processing video and permits changes to the mode
control register. It does NOT load initial values into reg-
isters. You must stop video processing with the soft-
ware reset bit before changing video processing via the
mode control register. You should assert software reset,
then change the mode control register bits (and load all the
other registers too) and then clear the software reset bit.

INTERRUPTS

The ADV601 asserts a single interrupt (HIRQ) to signal
many different things. The host program reads the inter-
rupt mask/status register to determine why the ADV601

–4–

