
Engineer To Engineer Note EE-1
Notes on using Analog Devices’ DSP, audio, & video components from the Computer Products Division
Phone: (800) ANALOG-D or (781) 461-3881, FAX: (781) 461-3010, EMAIL: dsp_applications@analog.com

a

Using Release 3.2 Of The ADSP-
21000 Development Software To
Generate ADSP-21061
Executables.

Last Modified: 11/14/96

Introduction

This Note describes how to develop programs for
the ADSP-21061 using Release 3.2 of the ADSP-
21000 Family Software Development Tools.

Because the ADSP-21061 became available after
the 3.2 release of the software tools, these tools do
not have built-in support for the ADSP-21061. As
a result, keywords of the type “ADSP21061” cause
an error if used with the 3.2 release assembler,
linker, or compiler. The next release of the
software tools, which is scheduled for January
1997, will have built-in support for the ADSP-
21061.

Because the ADSP-21061 is object code
compatible with the ADSP-21062, the techniques
required for developing ADSP-21061 code with
the 3.2 release tools involve accommodating the
functional differences between the ADSP-21061
and ADSP-21062. These techniques involve the
following development topics:

• Use the development tools architecture
(.ACH) file to accommodate memory structure
differences between the ADSP-21061 and
ADSP-21062.

• Avoid using features of the ADSP-21062 that
are not on the ADSP-21061.

• Be careful when using features of the ADSP-
21062 that are different on the ADSP-21061.

Producing ADSP-21061 Code

You can use release 3.2 software tools to generate
code for the ADSP-21061. Because the ADSP-
21061 is object code compatible with the ADSP-
21062, you can produce code that the tools
recognize as ADSP-21062 code and run that code
on an ADSP-21061.

The technique is to use the ADSP21062 keyword
as an architecture or assembly file directive and
run the output code on your ADSP-21061 system.
Developing code this way only works as long as
the you keep in mind the functional differences of
the two DSPs and accommodate these differences
within your code and system architecture file. As
described in the ADSP-21061 Data Sheet, the
ADSP-21061 differs from the ADSP-21062 in the
following ways:

• The ADSP-21061 has one Megabit on -chip
SRAM that is organized in two blocks with
eight columns that are 4K deep.

• The ADSP-21061 does not have Link ports.

• The ADSP-21061’s handshakes for external
port DMA pins DMAR2 and DMAG2 are
assigned to external port DMA channel 6.

• The ADSP-210601 does not have bi-
directional SPORT DMA.

• The ADSP-21061 does not have DMA
channels 8 and 9.

• The ADSP-21061’s modify registers in SPORT
DMA are not programmable.

ADSP-21061 Internal Memory

To develop ADSP-21062 code and run it on an
ADSP-21061, you must be aware of (and your
code must accommodate) how the memory
addressing reflects the physical memory
configuration. The correspondence between the
internal memory organization the ADSP-21061
and ADSP-21062 appears in Figure 1.

From Figure 1, one should note that any program
or data word placed in the upper half of Block 0 of
a ADSP-21062’s memory would also be placed in
memory Block 0 if the program was run on an
ADSP-21061. One should also note, as shown in
Figure 1, that any contents placed in memory
Block 1 of an ADSP-21062 would also be placed in
Block 1 of an ADSP-21061.

The ADSP-21062 has 2 Mbits of SRAM is
organized in 2 blocks. Each block has 16 columns
and each column is 16-bits wide with a height of
4K.

The ADSP-21062 has 1 Mbit of SRAM organized
in 2 Blocks. Each block is organized as 8 columns,

EE-1 Page 2

Notes on using Analog Devices’ DSP, audio, & video components from the Computer Products Division
Phone: (800) ANALOG-D or (781) 461-3881, FAX: (781) 461-3010, EMAIL: dsp_applications@analog.com

each 16-bits wide with a height of 4K. Figure 2
shows the bank and column structure of the
ADSP-21061’s internal memory.

To write ADSP-21061 compatible code, you must
ensure that the architecture file does not specify
more than the eight 16-bit columns per RAM
block that are on the ADSP-21061. Your
architecture file must handle this issue because
the 3.2 release linker does not check for this type
of error.

Note: The work arounds described here do not
work for the 3.2 release EZ-ICE emulator.
There is no support for the ADSP-21061
DSP using the 3.2 release EZ-ICE
emulator. The next release of the software
tools, which is scheduled for January
1997, will have emulator support for the
ADSP-21061.

Notes on the example

You can run the example, which appears at the
end of this note, on an ADSP-21061 or an ADSP-
21062 system. The architecture file, exam61.ach,
shows how you can use the 3.2 release tools to
program for the ADSP-21061’s memory
configuration. You can use the example assembly
file, exam61.asm, as a test case for the simulator
or a DSP system.

IOP Registers

Reserved Address
Space

Normal Word
Block 0

Normal Word
Block 1

Normal Word
Block 1 Alias

Normal Word
Block 1 Alias

Normal Word
Block 1 Alias

Normal Word
Block 1 Alias

Normal Word
Block 1 Alias

Normal Word
Block 1 Alias

Short Word
Block 0

Short Word
Block 1

Short Word
Block 1 Alias

Short Word
Block 1 Alias

Short Word
Block 1 Alias

Short Word
Block 1 Alias

0x0000 0000

0x0000 00FF
0x0000 0100

Short Word
Block 1 Alias

Short Word
Block 1 Alias

 0x0001 FFFF
0x0002 0000

 0x0002 3FFF
 0x0002 4000

0x0002 7FFF
0x0002 8000

 0x0002 FFFF
 0x0003 0000

0x0002 BBFF
0x0002 C000

 0x0003 3FFF
 0x0003 4000

 0x0003 7FFF
 0x0003 8000

 0x0003 BFFF
 0x0003 C000

 0x0003 FFFF
 0x0004 0000

 0x0004 7FFF
 0x0004 8000

 0x0004 FFFF
0x0005 0000

 0x0005 FFFF
 0x0006 0000

0x0005 77FF
0x0005 8000

 0x0006 7FFF
 0x0006 8000

 0x0006 FFFF
 0x0007 0000

 0x0007 7FFF
 0x0007 8000

 0x0007 FFFF

IOP Registers

Reserved Address
Space

Normal Word
Block 0

Normal Word
Block 1

Normal Word
Block 1 Alias

Normal Word
Block 1 Alias

Short Word
Block 0

Short Word
Block 1

Short Word
Block 1 Alias

Short Word
Block 1 Alias

21062 21061

Figure 1 ADSP-21061 & ADSP-21062 Memory

48-bit
words

32/16
-bit

words

ADSP-21061 (Two banks of 4Kx8-bit columns)

|--------------|--------------|---------|
| H | M | L | L | H | M | | |
|--------------|--------------|---------|
0x20000 0x21000 0x22000

Bank 0

Bank 0

| H | L | H | L | H | L | H | L |
|---------|---------|---------|---------|

|---------|---------|---------|---------|
0x20000 0x21000 0x22000 0x23000

48-bit
words

32/16
-bit

words

|--------------|--------------|---------|
| H | M | L | L | H | M | | |
|--------------|--------------|---------|
0x28000 0x29000 0x2A000

Bank 1

Bank 1

| H | L | H | L | H | L | H | L |
|---------|---------|---------|---------|

|---------|---------|---------|---------|
0x28000 0x29000 0x2A000 0x2C000

Figure 2 ADSP-21061 Memory Structure

EE-1 Page 3

Notes on using Analog Devices’ DSP, audio, & video components from the Computer Products Division
Phone: (800) ANALOG-D or (781) 461-3881, FAX: (781) 461-3010, EMAIL: dsp_applications@analog.com

Listing 1 - exam61.ach

/* This example architecture file can be used with the ADSP-21062 or the ADSP-21061 because the aliased area of
block 1 starting at 0x28000 is used (0x28000 aliases to 0x24000 on the ADSP-21061). The aliased area is used because
the Release 3.2 SHARC linker does not understand the ADSP-21061 memory map. The user must ensure the architecture
file does not specify more than the 8 16-bit columns per RAM block on the ADSP-21061 because the Release 3.2 linker
will not check for this. */

.SYSTEM EZ_LAB;

.PROCESSOR = ADSP21062;

.SEGMENT /RAM /BEGIN=0x020000 /END=0x0200FF /PM /width=48 isr_tabl; ! 8K x 48 in block 0

.SEGMENT /RAM /BEGIN=0x020100 /END=0x021FFF /PM /width=48 code0;

.SEGMENT /RAM /BEGIN=0x023000 /END=0x023FFF /DM /width=32 data0; ! 4k x 32 in block 0

.SEGMENT /RAM /BEGIN=0x028000 /END=0x028FFF /PM /width=48 code1; ! 4K x 48 in block 1

.SEGMENT /RAM /BEGIN=0x02a000 /END=0x02bFFF /DM /width=32 data1; ! 8K x 48 in block 1

.ENDSYS;

Listing 2 - exam61.asm

/* Test of instruction and data access of both internal RAM blocks */
.SEGMENT/DM data0;
.VAR testdata0[2]=1.0,2.0;
.ENDSEG;

.SEGMENT/DM data1;

.VAR testdata1[2]=3.0,4.0;

.ENDSEG;

.SEGMENT/PM isr_tabl;
nop;nop;nop;nop;
nop;jump block0;nop;nop;

.ENDSEG;

.SEGMENT/PM code0;
block0: f0=dm(testdata1); /* should take 1 cycle */

f1=dm(testdata1+1);
f2=f0+f1;

/* These take 2 cycles due to instruction/data conflict in block */
f0=dm(testdata0);
f1=dm(testdata0+1);
f3=f0+f1;

/* These take 2 cycles the first time through and 1 cycle subsequent accesses due to the cache*/
f0=pm(testdata0);
f1=pm(testdata0+1);
f4=f0+f1;

jump block1;
.ENDSEG;

.SEGMENT/PM code1;
block1: f0=dm(testdata0); /* should take 1 cycle */

f1=dm(testdata0+1);
f2=f0+f1;

/* These take 2 cycles due to instruction/data conflict in block */
f0=dm(testdata1);
f1=dm(testdata1+1);
f3=f0+f1;

/* These take 2 cycles the first time through and 1 cycle subsequent accesses due to the cache*/
f0=pm(testdata1);
f1=pm(testdata1+1);
f4=f0+f1;

jump block0;
.ENDSEG;

