
Engineer To Engineer Note EE-37
Notes on using Analog Devices’ DSP, audio, & video components from the Computer Products Division
Phone: (800) ANALOG-D or (617) 461-3881, FAX: (617) 461-3010, EMAIL: dsp_applications@analog.com

a

How to Interface an LCD to the
21xx and 2106x Family DSP’s

Last Modified: 9/21/1997

Overview

This document contains example code and
hardware to interface an Optrex dot-matrix type
LCD module to both the ADSP21xx and
ADSP2106x family digital signal processors.
Optrex brand displays come in a wide range of
display sizes (16 characters x 1 line to 40
characters by 4 lines) and can be easily interfaced
to both family of DSP’s. Below is list of features:
• 192 kinds of displayable characters,

numerals, symbols and special characters
stored in internal ROM

• Programmable character RAM
• Various display functions include: clear

display, cursor to home, on/off cursor, blink
character, shift display, shift character,
read/write display

• Compact and lightweight design
• Low power consumption

Hardware Interface

Because the micro-controller within the LCD
display is much slower than the DSP, the
minimum timing specs on certain control signals
in the LCD extend far past the maximum timing
specs of the DSP. To compensate for this, a
CMOS octal D-type flip-flop is used between the
two. Both the control signals and data lines pass
through the flip-flop so they can be held as long
as necessary.

This design is the most simple and cheap,
requiring only one octal flip-flop (74HC574). It
will work for both the ADSP21xx family and
ADSP2106x family DSP’s. The limitations on
such a simple design is that we cannot read back
data from the LCD and all data transfers are 4
bits wide (vs. 8 bits). Most applications, however,
would not necessitate the ability to read back
from the LCD or write 8-bits at a time. Below is a
simple schematic.

Each OPTREX LCD has an initialization
sequence that must be performed upon power up.
This configures the display mode and data width
(4 or 8 bit). When entering any 8-bit LCD data
into a data buffer within the DSP, it is important
to remember that we are writing 4 bits at a time
and the most-significant nibble is written first.
The sub-routine LCD_INIT listed on the following
pages writes the initialization nibbles to the LCD
from a buffer in memory called InitCodes.

When sending initialization or configuration data
to the LCD, the RS line is low. To send the bytes
0x86, 0xC2, 0xFF for example, our data buffer in
the DSP would look like this: 0x8, 0x6, 0xC, 0x2,
0xF, 0xF. When sending characters, on the other
hand, the RS line (bit 5) is high. To send the
same data as before as character data, the data
buffer in the DSP would look like this: 0x18,
0x16, 0x1C, 0x12, 0x1F, 0x1F. Initialization and
configuration data must be stored with bit 5
cleared and character data must be stored with it
set.

The following 2 pages contain example code for
both the ADSP21xx and ADSP2106x family
DSP’s.

D8:D15

WR
CLK

1D:8D

OC

1Q

2Q

3Q

4Q

5Q

6Q

7Q

8Q

74HC574

D0:
D3

RS

D0:
D3

E

R/W

DSP LCD

D16:D23

21xx

2106x

Software

EN-### Page 2
Notes on using Analog Devices’ DSP, audio, & video components from the Computer Products Division
Phone: (800) ANALOG-D or (617) 461-3881, FAX: (617) 461-3010, EMAIL: dsp_applications@analog.com

Related Websites:
http://www.cis.uoguelph.ca/~mac/lcd.html
http://www.avnet.se/avnet_times/september96/optrex.html

EN-### Page 3
Notes on using Analog Devices’ DSP, audio, & video components from the Computer Products Division
Phone: (800) ANALOG-D or (617) 461-3881, FAX: (617) 461-3010, EMAIL: dsp_applications@analog.com

ADSP 21xx Code
LCD_INIT

Inputs : n-length buffer in program memory
Description : Writes buffer of initialization data to LCD.

lcd_init:
call delay_15ms; /* delay after power up */
i7 = ^InitCodes; l7 = %InitCodes; m7 = 1;
cntr = %InitCodes-1;
DO end_1 Until CE;

ay0 = pm(i7,m7);
end_1: CALL lcd_write; /* output command to display */

rts;

LCD_WRITE
Inputs : 4 LSB’s of ay0 hold nibble data to be sent to LCD
Description : performs a nibble-write to the LCD. Sets and clears all necessary control signals

and takes care of all timing issues. Assume LCD is located in external memory
space at location 0x0.

lcd_write:
ar = 0; /* ensure that the E (enable) is low */
dm(0x0) = ar;
ar = ar or ay0; /* set up the data, RS, and RW */
dm(0x0) = ar;
nop; nop; /* delay at least 60ns before E goes high */
ax0 = b#0000000000100000; /* ar = setbit LCD_E_BIT of ar */
af = pass ar; ar = ax0 or af;

 dm(0x0) = ar; /* E pin is high now */
cntr = 6; /* pause for enable pulse width */
do data_hold until CE;

data_hold: nop;
ar = ax0 xor af; /* ar = clrbit LCD_E_BIT of ar */
dm(0x0) = ar; /* return E to low */
ar = 0;
dm(0x0) = ar;
call delay_15ms; /* for subsequent writes, need this delay */
rts;

DELAY_15MS
Description : Waits for 15ms with 40Mhz DSP clock speed.

delay_15ms:
cntr = 150;
do end_15 until CE;

cntr = 3333;
do end_16 until ce;

end_16: nop;
end_15: nop;
 rts;

EN-### Page 4
Notes on using Analog Devices’ DSP, audio, & video components from the Computer Products Division
Phone: (800) ANALOG-D or (617) 461-3881, FAX: (617) 461-3010, EMAIL: dsp_applications@analog.com

ADSP 2106x Code
LCD_INIT

Inputs : n-length buffer in program memory
Description : Writes buffer of initialization data to LCD.

lcd_init:
call delay_15ms; /* delay after power up */
b8 = InitCodes; l8 = @InitCodes; m8 = 1;
lcntr = @InitCodes-1;
DO end_1 Until LCE;

r1 = pm(i8,m8);
end_1: CALL lcd_write; /* output command to display */

rts;

LCD_WRITE
Inputs : 4 LSB’s of r1 hold nibble data to be sent to LCD
Description : performs a nibble-write to the LCD. Sets and clears all necessary control signals

and takes care of all timing issues. Assume LCD is located in external memory
space at location 0x400000.

lcd_write:
r0 = 0; /* ensure that the E (enable) is low */
dm(0x400000) = r0;
r0 = r0 or r1; /* set up the data, RS, and RW */
dm(0x400000) = r0;
nop; nop; /* delay at least 60ns before E goes high */
r2 = b#0000000000100000; /* ar = setbit LCD_E_BIT of ar */
r3 = pass r0; r0 = r2 or r3;

 dm(0x400000) = r0; /* E pin is high now */
lcntr = 6; /* pause for enable pulse width */
do data_hold until LCE;

data_hold: nop;
r0 = r2 xor r3; /* ar = clrbit LCD_E_BIT of ar */
dm(0x400000) = r0; /* return E to low */
r0 = 0;
dm(0x400000) = r0;
call delay_15ms; /* for subsequent writes, need this delay */
rts;

DELAY_15MS
Description : Waits for 15ms with 33Mhz DSP clock speed.

delay_15ms:
lcntr = 150;
do end_15 until LCE;

lcntr = 4000;
do end_16 until LCE;

end_16: nop;
end_15: nop;
 rts;

