DESIGN SHOWCASE ## Uninterruptible 5V Supply Has Low Power Consumption The uninterruptible power supply of Figure 1 combines a switching regulator with a linear regulator. When V_{IN} is above 7.3V, the switching regulator (IC₁) shuts down, the linear regulator (IC₂) generates V_{OUT}, and V_{IN} trickle charges the battery through D₁ and R₁. When V_{IN} drops below 7.3V, IC₂ shuts down and the step-up switching regulator takes over, generating 5V at 50mA from the 3.6V battery (three series-AA NiCd cells). A 9V wall adapter supplies V_{IN}. IC₂ contains a lowbattery detector circuit that senses V_{IN} by means of R₆ and R₇. The detector output (pin 7) drives an inverter (Q₁), which in turn drives the shutdown inputs I_C of IC₁ and SHDN of IC₂. These inputs have oppositepolarity active levels. The common feedback resistors R₂ and R₃ enable both regulators to sense V_{OUT}. When IC₂ shuts down, its output turns off; but when IC₁ shuts down, the whole chip assumes a low-power state and draws less than 1µA. L₁, D₂, C₁, C₂, R₂, and R₃ are part of the 250mW switching regulator. Diodes D₃ and D₄ wire-OR the power connection to IC₂, and C₃ improves the linear regulator's load regulation. When active, IC₁ provides an overall efficiency of 76% for load currents between 5 and 50mA. V_{IN} mayrange as high as 17V, but you should set the value of R₁ for a trickle charge of no more than 10% of the battery capacity, i.e. 0.1C. (Circle 5) Figure 1. Linear regulator IC2 supplies 5V when VDI is present; otherwise the step-up switching regulator IC1 generates 5V from the battery. Thus, VOUT remains constant whether VIN is on or off.