
 

 

 

 

Microprocessor Systems Laboratory 

Developing tools - Simulators 

 

 

 

 

 

 

 

 

 

 

 

 
        



What is an Simulator ? 
 
 
The Simulator is a program that supports microcontroller's opcodes and peripherals to let you 
debug the program in a safe, crash-proof environment. Running on PC with no additional 
hardware. Simulator is ideal for testing entire programs before the target hardware is ready. 
On-chip peripherals are fully simulated, while off-chip peripherals can be simulated by files 
or keypresses.  
Simulator often comes as a part of an Integrated Development Environment (IDE) for 
simulation of the embedded microcontroller applications. The simulator allows to switch 
between source mode and disassembly mode debugging as required. You can choose between 
disassembled code and original assembler or High Level Language (HLL) source code. 
Disassembly mode debugging lets you focus on the critical sections of your application, and 
provides you with precise control over the hardware. You can execute the program as an 
assembler instruction at a time, and display the registers and memory or change their 
contents.  
The simulator makes it easy to test hardware defects and critical situations which are difficult 
to debug with real hardware. 
 
Example of an IDE 
 
 
The example of an Integrated Development Environment is µVision2. The µVision2 IDE 
from Keil Software, combines project management, make facilities, source code editing, 
program debugging, and complete simulation in one environment. µVision2 helps you get 
programs working fast while providing an easy-to-use development platform. The editor and 
debugger are integrated into a single application and provide a seamless embedded project 
development environment. 
 
 
Steps to use the µVision2 IDE 
 

Project 
First step is to create the project. A Project is the collection of all the source files as well as 
the compiler, assembler, and linker settings required to compile and link a program. The 
Project menu provides access to all dialogs for project management including: 

- New Project. which creates a new project. 
- Targets, Groups, Files. which add components to a project.  The Local menu in the 

Project window allows you to add files to the project. 
- Open Project. which opens an existing project. 

When you create a new project, you select the chip you will use and µVision2 automatically 
sets the necessary assembler, compiler, and linker options. 
 

Program 
Second step is to write the program. You can use included editor. Color syntax highlighting 
and text indentation are optimized for editing C source code. Most editor functions may be 



quickly accessed from the toolbar.  The editor is available while debugging your 
program. This gives a natural debugging environment that lets correct errors in source code.  
 

Compilation 
As a next step the program must be compiled. µVision2 includes an integrated make facility 
to compile, assemble, and link the program. After compilation and assembling the source 
files, status information as well as errors and warnings appear in the Output Window. 
 

Debugging 
When the program is free of compilation errors it can be simulated for debugging. In the 
µVision2 debugger, you run your target program by clicking on the Run button on the 
toolbar.  The Run button executes code until a breakpoint is reached. In addition to simply 
running your program, you may use the buttons on the toolbar to step through your 
application program one line of code at a time.  
When Trace Recording is enabled, the Show Trace Records button lists the last 1024 
instructions that were executed.  Trace recording lets you analyze the program flow prior to a 
breakpoint.  

The debugger allows you to select a line of code at which execution is halted.  This is called a 
Simple (or Execution) Breakpoint.  While debugging your program, right-click on a line of 
code to set an execution breakpoint.  Then, when that line is reached, the debugger halts 
program execution and allows you to examine memory, registers, variables, and so on. In 
addition to Simple Breakpoints, the µVision2 debugger allows you to set breakpoints on 
conditional expressions and even on different types of memory accesses.  Breakpoints may 
include a count which decreases until the breakpoint is triggered.  Commands may be 
executed when the breakpoint is triggered or, if no command is specified, program execution 
stops. Use the Breakpoint command from the Debug menu to define complex breakpoints. 

Program optimizing 

The IDE offers tools for optimizing the program to take less time to execute. The built-in 
performance analyzer in the µVision2 debugger records and displays execution times for 
functions and program blocks you select.  Bar graphs display the amount of CPU time spent 
in each part of your program. You may use the information gathered by the performance 
analyzer to determine execution hot-spots in your application.  Then, you can concentrate 
your efforts on making that part of your program faster.  

Based on the Keil IDE description. http://www.keil.com/uvision2/ 

 

 

 

 



Exercise description 
During the exercise students are to: 

- Create the project in µVision2 
- Write the program in C (topic given by the supervisor) 
- Compile the program 
- Observe program execution in the simulator watching parameter passing to the 

procedures 
- Analyze execution time of program blocks 
- Optimize the most time-consuming blocks using assembler 

 
The optimization can be done in three ways: 
 
First way is to create the assembler source file instead of object file during compilation 
process. Such assembler file can be optimized manually and assembled. To compile the C 
source to the assembler source file you have to use #pragma SRC directive at the top of the 
file. The compiler will create the *.src file that you should rename to *.a51. 
 
Second way is to write some part of the code in assembler inside the C file (inline assembly). 
To do it you have to: 

- use #pragma SRC directive at the top of the file  
- use the pair of directives inside the file: 

      #pragma asm  
         // add inline asm instructions here 
     #pragma endasm 

- turn off the checkbox "Include in Target build" in the options for C source file. 
 
Third way is to write one module in C, other - more time consuming module - in assembler. 
To write the assembler function called from C you can use the template created as in first 
example. 
 
Report 
 
The report should contain: 

- Title page 
- Topic of the program 
- Source code of the program with comments 
- Description of passing the parameters to the procedures 
- Performance analyze 
- Result of optimization (changed blocks of disassembled program compared to original 

compiled version) 
- Conclusions 

 
 


